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THE DISTPJBUTION OF THE TEST STATISTIC

USED IN THE NEWMAN-KEULS IIULTIPLE COMPARISON, TECHNIQUE

Jamest. Carlson, Charles E. Stegman, and Wayne. R. Applebaum

University of Pittsburgh

1. Introduction

Thd purpose bf this study was to investigate the distribution of the

test statistic used in the Tukey, Newman-Keuls and Duncan methods of per-

forming post-hoc multiple compaisons following a significant analysis of

variance F-test. There is a problem in this distribution that is not
A

directly discussed in the literature we have surveyed but is mentioned in

a personal communication from Rupert G. Miller (1971), and is alluded to

by Spjfitv011(1974). Because different Studentized range distributions are

used directly in determining critical values for the Newman Keuls method

our discussion will center around this particular method.

2. The Newman-Keuls Technique

Following a significant analysis of variance F-test, among the many

available post hoc multiple comparison techniques is one first mentioned
.

by "Student" (Newman,'41939), developed by Newmani(1939) and rediscovered

'by Keuls (1952). This procedure is now known as the Newman-Keulsiethod.

Given the set of k population means, ul, u2, uk , estimated

by the means of k independent random sample, Yk , the first

step in the Newman-Keuls procedure is to rank these sample means. Denoting

th
the j smallest mean as 7(j) so that the smallest IA 7(1) and the largest

is 700 , the ordered set of. sample means is fur T(2 ..,



, Nk

The second step is to compute
TE
(1)\ .>the ratio: kQ(k)..(1)=.

TE -
(k)

'i "Semnwhere n is the size
r

of each of the k samples and MSe is the error mean

square from the-analysis of variance (note that the techdique assumes that

the k samples are all of the same size, n). This ratio is then compared

to qk,v,17s, , the 100(1-0) percentile of ,the, Studentized range distribution

with parameters k and v, the number of degrees of freedom associated ,with

the error sum of squares in the analysis of variance.

If

kQ(k) -(1) > qk,v,1 [ 1]

the hypothesis of no difference between the means of groups (k) and (1) is

rejected and the researcher proceeds to teat other pairs of means. If,

TO the other hand,

0(k)-(1) < [2]

the researcher concludes that the two most extreme group means are not ,dif-

ferent. Since the two most extreme group meanik are juOged not to be

different, the researcher also concludes that all other, less extreme,

pairs are not different. In this case, no further comparisons are made.

If the inequality in [1) is true, the next compatisoni to be made are '

those repreaented in the inequalities,

/led

0(k-1)-(1)-m

V
(k-1)

-
(1)

J MSe / 'n

Y(k) -
(2)

0(k)-(2)
j MSe / n

4

4k -1,v, [31

14]
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I
If [3] is true the researcher proceeds to examine f(k...2r4,-. 7(1), but if

[3] is not true than the two means p
(k-2)

and p
(1)

are judged not to be

different. Similarly, if [4] is true %..1) -7(2) and Y(k) - 7(.1'are
).

examined, but if [4) is not true the analogous population means are judged

not to be different. If we construct a table of differences between pairs

of ordered means, as illustrated.in Table 1, it can be seen that this

procedure results in the following rules: (a) we start by examining the

difference in the upper right corner and if it is significant we proceed

to examine the next difference in the same row and the next difference in

the same column, (b) when a nonsignificant difference is found, no further

differences in the game row and the same column are examined.

Table 1

Mean Difference Table for Newman,Keuls Technique

-Y(2)). '70.)
Y(3) - f

(1)
.... -

17(k-1) i(1)
Y(k) Y(1)

T - f
(35- (2)

.0...
1)-1) _ Y(2) Y(k) - ;

2)

.

.

.

.

.*-

.

. . .

.
,

V((-1) - Y(k-2)
Ti
(k)

-
Y(k -2)

Y
(k)

-Y
(k -1)

N

5
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3. The Problem
9

The iple of the qk,v distribution for the distribution of the test

statistic
' k

Q
(k) e(1)'

as a test of

H p = p = . = P01' 1 2 k

is valid when the usual ANOVA'assumptions are met (Spj9itvoll, 1974). That

is, given normality, independence, homogeneity df

that the hull hypothesis is=true then the variable
-

.is distributed as the Studentized range with k and

variance, and the fact

k (k) -(1,
(in foimula 1)

v degrees of fibedmn.

As Spj$tvoll notes, if we reject H
ol

using the decision rule in [11

then we'conclude" that p
k

p
1'

In tthis case, it is tenable that it

is population k that is different from the others,or that it is population

1: Therefore, we have two possible simplifying hypotheses:

Hot: p = =
1 112

and

=
. 'k-1

H
03'

p
2
= p

3
= = P

k

These correspond respectively to the cases Where and pl lead to the

rejection of Hol

Ndw if it is true that H
ol

is false then in Hot and H
o3
' we have chosen

to remove a,pppulation mean (either pk,or pi) that is indeed different from

the others. In this case, the removal of this extreme value should not

effect.the order statistics of the remaining k-1 means and we'can use the

test statisticb
k
Q
(k-1)-(1)

and
k
Q
(k).42)

to test H
02

and H
03

respectively.

Again, if we assume H02 and H03 are true and the ANOVA assumptions are met

then the variable's kQ(k...1)41) and kQ(k)-(2) should be distrib4ted as the

Studentized range with k- v degrees of freedd6.



However, if we made a Type I error in "concluding" that Ol is false

then the distributions of the variables
k
Q (11, and k

0
(h)-(2)

are'not

the results of k-1 independent samples. Rather they represent k-1 samples

remaining after discarding one extreme observation. This has the effect

of truncating or restricting the range of values for. the tesystatistics.

It was hypothesized that this would reduce the actual mean and variance of

the distributions and consequently will lead to a more'eonservative test

of H02 and Hoa. The same argument applies to 1104,,H050 etc. if we rejected

H02 or Ho3 on the basis of
k'0 (k-1)-(1) or 0(k)-(2).

Of course; if we knew that Hol were actually true then following the

logic of the testing procedure we Would not test 11_,, ,
oJ

, etc. However,

in practice we make the original decision on the basis of 0(k)-(1) and

indeed Type rerrors will be made. Since is a problem for all such

comparisonsa natural question is, "How differ are the true distribu-

tions of-the Newman -Keuls test_statistics from the Studentized.range dis-

lbutions that are actually used?"

Since the mathematical.derivations and subsequent numerical integrations

to determine the critical points for the actual distributions are quite

complex, a Monte Carlo sampling study,was designed to estimate how conserve:-

time the test procedures are. The design of the study.is discussed in

Section

fi
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4.' Related Literature

Although we were unable to find any literature relating directly to

the problem of this study therotare,several sources that provide informa-

tion abouethe Newman-Eauls technique and its use.

As mentioned ealier the technique examined in this study was first

proposed by Newman (1939) and later Keuls.(1952), apparently unaware of

Newman's paper, proposed the same technique. Newman, and Miller (1966)

both indicate that the basic idea was an outgrowth of the work of "Student."

The most comprehensive textbook discussions of the Newman-Keuls tech-

nique are tire of Miller (1906, pp. 81-90) and Winer (1971, pp. 191-196).

Miller presents most of the underlying theory and compares the technique

to alternative techniques, in particular to the Duncan multiple range

test. Winer presents the computational procedures and also presents a

comparison of seven different multiple comparison methods, including the

Newman-Keuls method. Other texts that.discuss the technique include those

of Kirk (1968) and ,Mendenhall (1968).

Besides the above-mentioned textbook discussions there are several

journal articles that include discussions of the Newman-Keuls technique.

The most comprehensive of these is the article by Spgtvoll (1974) in

which the bases of several procedures and comparisonyf them are discussed.

O'Neill and Wetherill (1971) briefly mention the Newman-Keuls technique

in an interesting "state of the art " discussion, and also provide an

extensive bibliography on multiple comparison procedures. Two studies'

(Petrinovich & Hardyck, 1969; Carmer & Swanson; 1973)'have been conducted

in which Monte Carlo methods were used to compare the Type I and Type II

error rates of several multiple comparison technqiues. Although the Newman-

Keuls technique wasinvestigated in both of these studies the conclusions

4.
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were quite different. :Petrinovich and Hardyck argue against using the'

Newman-Keuls technqiue because they found it had a high txperimentwise

Type I error rate under conditions other than the case where all popula-
-

tions have identical means. Carmer and Swanson, on the other hand reject

\

the Newman-Keuls _procedure because of its Type II,error rate. Games (1971)

prdVides some additional discuslion in a criticism of, the Petrinovich and

Hardyck article. Interestingly, Carmer:and Swanson generated their data

according to a randOmized block design with zero block effects, and ;

analyzed the data'according to that model. With zero bloc effects the

correct model would be the completely randomized model and, in general,

analysis according toan incorrect model leads to 'a loss in precision.

The authors do not indicate why .they chose the hiring design.

5: Design of theStudy

In 6rder to investigate the sampling distribution of the test statistic

used in the Newman-Keuls technique a total of 9 experiments were simulated,

each with 10,000 replications, The first three experiients each had three

groups and used samples of size 5, 10, and 15 respectively. The next three

experiments involved four groups gain using sample sizes of.5, 10 and 15.

The final thkee experiments were explicitly designed to generate empirical

sampling distributions of the specific. Studentized range distributions that

would be needed in some of the

the'nine experiments shown in

in order to indicate in which

first six experiments. The descriptions of

Table 2, include the error degrees of freedom

experiments the distributions are comparable.
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Table 2

Descriptions of the Simulated Experiments

txperiment No. 1 2 3 4 5 6 7 8 9

No. of Populations 3 3 3 4 4 4 2 2 3
,I,

Size of each Sample 5 10 15 .5 10 15 7 22 13

Error Degrees of 12 27 42 16 36 . 56 12 42 36
Freedom

For each of the possible contrasts in each experiment.the freggency

with which the value of the test statistic fell in each of seven intervals

was tabulated. The seven intervals were defined by using percentiles of

the particular Studentized range distribution that would be usgd for the

Newman-Keuls technique on each contrast. The percentiles (.900, .950,

.975, .990, .995, .999) were taken from Harter's (1960) tables or calculated

by linear harmonic interpolation of values from those tables as suggested

by Harter. The upper tail percentiles wete chosen because they are the

critical areas of the distribution used by the Newman-Keuls technique.

Thus, using Q to represent the value of the test statistic and Pj to

.

represent the j
th

percentile of the appropriate Studentized range distribu-

don-, the seven intervals that were used were: Q < P90; P90 < Q <.P95;

P95 < Q < P97.5; P97.5 < Q < P99; P99 < Q L1399.5; P99.5 < Q < P99.9; and

P99.9 < Q.

Estimates of the mean, variance, skewness and kurtosis were also cal-
-

culpted for each distribution, using the formulas given by Bennett and
,..

4
Franklin (1954, pp. 81-82). Using the method described by Newman (1939)

expected values of each theoretical distribution were computed and com-

'parisens were made between these expectations and the means of the distribu-

tions that,were generated.

10
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It was anticipated that the distributions for the test statistics'
4

would show less variability than the theoretical distributions for contrasts

Involving pairs of means other than the two most extreme for a particular

experiment.

. 6. Generation Techniques
0

Values of the dependent variable were pseudo-random standard normal

deviates generated by using the log-and-trig transformation method (Box &

, Muller, 1958) on pseudo-random uniform values generated by the multiplicative

congruential method. The multiplier for the congruential method was 131075,

which was selected beCause it has been demonstrated to result in variates

having desirable characteristics (PingeI, 1975; Maclaren & Harsaglia, 1965 ).

All computations were done on a PDP10 colipUter at the University of Pittsburgh

Compdter Center. This machine stores an integer in a location having 35

bits plus sign, and thus residues mod (2
35

-1) were used by allowing integer
1

multiplications to overflow. For mo e details of this technique the

interested reader is referred to Newnan and Odell (971) or Hammersley and

Hands comb (1964).

In order to check the,comPuter p ograms, samples of the pseudo-random

/

uniform and normal variates were gen rated and unb/Olised estimates of:the

Means and variances computed. A sa le of 10,000 uniform values had

\

- a mean of .49945 and variance of .08 38 as, compared to the theoretical values

\

of .5 and .08333, respectively. Three samples, each of 10,000 normal values

were generated and had means of -.0124, -.00344, and .01052 and variances

of 1.00182, .99960 and .99350 as compared to the thelretical values of zero

and one. Finally, using the final verSion of the computer-program, a total

sample of 3000 normal values was generated and the mean and variance estimates

were .00858 and .99565 respectively. . \
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7: Results'

Tables 3 and 4 showthe frequencies with which values of the Newman-

Keuls test statistic Were didtributed across the seven intervals defined

y using percentiles of the theoretical Studentized range distribution.

Fore rows 1, 4, 5, 8, and 11 the Studentized range distribution is

theoretically cotrect. As can be seen by examining these rows the

observed frequencies correspond closely to the expected frequencies.

Row 1 corresponds le; the distribution of 39(3).(1) and the Studentized

range distribution is the appropriate dCs bution. As outlined befbre;

A.if a Type I error is made in this test then we would proceed to incorrectly

test 39(2).(1) and 39(3).42i . The distribution of these statistics do not

theoretically have Studentized, range distributions. (he observed fre-

quencies in rows 2 and 3 clearly indicate that these two tests-:deviate

markedly from, the expected frequencies. The deviations are in the pre-

dieted direction, that is, the testslguld be conservative. For comparison

purpbses we generated the data in row 4 which has the same degrees of freedom

as rows 2 and 3. However, this distribution is theoretically correct beCause,

it involves the contrast between the two extreme means'in a two population

case. Recall from Table 2 that' in order to get comparable degrees of free-

dom the sample size in experiment 7 were equal to seven. Further exlmina-,

1}

tion Of Table 3 for the cases where ns,.10 and nril supplies further evidence

for the conclusion that if a Type I error is mad for'the first contrast.

' tested by the Newman-Keuls technique then the significancejevelefor the
o

next two tests is much smaller than the nominal level the researcher may

think he is using when he performs the tests. That is, when,k=s3 the sample

sires, and hence the number of error degees of freedom, appear to make 1Ittle

difference in the conservativeness of the tests.

12r.
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4

Similar conclusions are reached after examining rows (1,2,3; 7,8,9,10; -

,
!

14,15,16) of Table 4. -These cases represent the situations where k"4 and

nme5, 10, and 15. It is easy to see again that when a Type I error is
,

made in the first test then the resultant tests based 'on:4E1(4)42) and

40(3)41) are conservative..-Next, consider rows (4,5,6; 11,12,13; 11,18,,19)

. ,of table 4. Examination of these rqweshows, as might be expected, that_

the distribution of thsAiest statistic is even more drastically:affeCted
. , .

when tUo or three Type I' errors are tade. In this case we are conducting
k 1

tests,of means receiving adjacent ranks for four-population experiment's,.

In all cases considered here, the Newman-Keuls teChniqUe becomes very

conservative with respect to Type I errors once one or more Type I, errors

have. been committed. This finding is in agreement with the. author's

a priori hypothesis that the distribution of the test statistic would have

'a smaller mean and variance under these conditions than when no Type I
,

error was made.

*.As a further illustration. of the departure of the actual test statistic,

distribution from that used to obtain the critical values we present, in

Figures 1, 2, and 3, plots of the empirically generated distributions for-

2Q(2)41), 3Q(1).41) and 3Q(3),(2). These three distributions were chosen

becauSe it was possible to design, for example ,(Figure 1) e.two-population
f

.- .,

experiment with.12 degrees of fieedom, for which q2,12 is the theoietically

. 1
,

correct test statistic distribution, and a three-population experiment which

would result in the use of a
2,12 after having made a Type I error.

.4
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Comparisons of the actual means of the generated distributions with thet

expected values of the Studentized range distributions used in the Newman-

Keulstechnique are presented in Table 5. This Table has tour sections.

The first section contains the comparisons for the.distributions that are

4r
theoretically correct (no Type I errors previously made). The other sections

contain the comparisons for cases in.which one, two.and three Type I errors

have been previously made and the expectations in 'these sections are those

for the specific Studentized rahge,distributions used in the Newman-Keuls

technique.

4

19
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. Table 5-

Comparison of Empirical Means and Their Expectations

Statistic

2Q(2) -(1)

I

29(2)/-(1)

Q
3. (3) -(1)

7.
Q
(3)

3Q(3)."(1)
4.,

3
Q
(3)-(1)

4Q(4)2(15

4Q (4)-(1)

0(4)41)

r3Q(2)41)

3
Q (3 )42)-

30(2)-(1)

.3Q(3-(2)

3Q(2)-(1)

3Q(3)-(2)

3(1(2)-(1)

3Q(3)-(2)

0(3)41)

0(4)-(2)

:0(3)41)

4Q(L4) -(2)

0(3)41)

0(4)-(2)

No. 'of Distri-
Previdus button
Type I Used
Errors

Mean ,Expectation
Difference

Mean- E(Mean)

12

42

12

27.

36

42

16

36

56 .

0

0

0

0

0

0

0

0

0

a
- -2,12.

82,12

a

83,27

a

q
3,42

84,1.6

84,36

84,56

1.2116

1.1665

1.8099.

1.7416

1.7154

1.7191

2.1720

2.0897

_2.0767

1.2056

1.1490.

1.8084

1:7415-

1.7289

1.7236

2.1620

2.1029

2.0868

.0060

.0175

.0015

.0001

-.0135

-.0045

.ogto

-.0132

-.0101

12

12

27

27

36

36

42

42

16

16

36

36

56

56

1

1

1

1

1

1

1

1

1.

1

1

1

1

q
2,12

q 2,,12.

g2;

82,27

82,36

42,36

q
2,42

q2,42

43,16

q3,16

q3,36

-3,36

83,56

a..

.9079.

.4x19

.8722

.8694

.8642

.8512

.8501,

.8690

1.4082

1.3932

1.3440

1.3529

1.3443

1.3396

1.2056

1.2056

1.1609

1.1609

1.1526

1.1526

1.1490

1.1490

1.7774

1.7774

1.7289

1.7289

1.7157

1.7157

,

-.2977

-.3037

-.2887

-.2915

-.2894

-.3014

-.2989

-.2800

-.3692

-.3842

-.3849

-.3760

-.3714

-.3761-
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Table 5 (cont.) ."

No. of Distri-
Previous bution DiffekenceStatistic v Mean ' ExpebtationType I Used ideas- E(Mean)
Errors

40(2)41) 16 2
q2,16 1.1850.7788 -.4062

,

v
tQ(4)43) 16 2

.c.12,16 ,

.7638 1.1850 -.4212

04 -41582 .7368 1.1526 ,4(2)-) 36 q2,36

0(4)-(3) 36
2

q2,36 .7457 . 1.1526 -.4069

0 .-.4067.7371 1.1438(2)-(1) 56
2

q2,56

0 -.4114(1.1438(4)-(3) 56
2

q2,56 .7324

40(3).42) 16 3
q2,16

.629 1.1850 -.5555

4Q (3)-(2)
36 3

82,36
.6073 1.1526 -.5453

0(3)-(2) 56
3

q2,56
..072 1.1438 -.5366

'-4
Values in the first section'of Table 5 show that the means of the generated

distributions are very close to their expectations, the largest deviation from

expectation for the 9 distributions being only .0175. After one Type I error

has beceri<Z, however, the mean ofthe empirical distribution .differs from

the expectation of the distribution used'in the Newman-Keuls procedure by

amounts ranging from .2800 to .3849 for the 14 different distributions.

Similar(y, the mean of the empirical distributions for the case of two previous

Type I errors deviate from the expectations' of the distributions actually used

by amounts, varying from .4062,to .4212.for six,distributIons, and the similar

deviations for three distributions following three Type I errors range from

.5366 to .5555.

21
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These data indicate, as we had predicted, that the means of the dis-

tributions of iheNewman-Ketas test statistic definitely do decrease following

a Type I errdr on a previOus test.

As a final basis for comparison of the distributiong generated in this

9

study we present, in Table 6, estimates of the means, variances, and indices

of skewness (gamma -one) and kurtosis (gamma - two),. For convenience of reading

this Table presents the particular contrasts in the same order as used in

Tables 3 and 4.
110

A
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Table 6

Estimates of Parameters of the Distributions

9

_,

Statistic v

nu.

Previous
Type
Errors

of

Estimates of Parameters ,

I /lean Variance Skewness IGurlosis
.

3Q(3).2(1.)

3Q(3).42)

3Q(2)-(1)

2Q(2).(1)

12

12

12

12

"

1

0

1

1

D

1.8099

:9019

.9079

1.2116
),,1

1.1353

.6025

.6077

.9314

1.2098

.1.5351
.

1.5934

1.2794

2.8572

3.3147

4.0802

2.2504

3Q(3)-(1)

Q3i3)-(2)

3Q(2)-(1)

27

27

27

0

1

1

1.7416

.8694

.8722

.9274

.5137

.5123

.9130

1.3637

1.2731

1.2369

2.4987

1.9543

3Q(3)41)

3Q(3).42)

3Q(2).41)

2Q(2)-(1)

42

42

42

42

.

0

1

1

0

1.7191

.8690

.8501

1.1665

.8723

.4971

.4831

.7825

.7.398

1.2010

1.2271

1.0681

.499Q

1.5185

1.6903

1.1629

3Q(3)-(2)

3Q(2)-(1)

36

36

1

1

.8512

.8642

.4963

.4983

1.2901

1.2745

2.0159

2.0331

4(1(4)41).

4Q(4)-(2Y

4Q(3)41)

4Q(4)43)*

4(1(2)41)

4Q(3)42)

16

16

16

16

16

16

0

1

1

2

2

3

.2.1720

1.3932

1.4082

.7638

.7788

.6295

1.0523

.6794

.6784

.4262

..4306

.2991

.8727

.1.0277

1.0156

1.4196

1.3750

.16

4.5;81

1.2383

1.6104

/1.5548

2.5623

2.4693

3.4331

I
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Table 6 (Cont.)

Statistic v

No. of
Previous
Type I .

Erwrs

P,

Estimates Of Parameters %

-1

1

Mean Variance Skewness Kurtosis

4Q(4)-(1)

0(4)-(2)

4Q(3)-(1)

'3Q(3):(1)

,4Q(4)-(3)

.

4(1/42)41)

4`0 (3)-(2)

36

36

36

36

36

36

36

0

1

1

0

2

2

3'

2.0897

1.3529

1.3440

1.7154

.7457

.7368

6073

.8750

.5896

.5820

.8963

.3968'

.3877

.2590

.6720

..8581

.8139

.8356

1.3975

1.2802'

1.2802

.5417,

... .8951

.7356 .

.8442

2.6537

1.8960

' 1'.8353

...

-

4Q(4)-(1)

4Q(4)-(2)

4
Q
(3)-(1)

4Q(4)-(3)

0(2) 41)

4Q(3)-(2)

56

56

56

56

5§

56

D

1

1

2

2

3

2,0767

1.3396

1.3443

.7324

.7371

.6072

.8397

..5633

.5804

. .3677

.3881

.2649

6263

.8328

.7862

1.2768

1.3349

1.3264
)

.4946

.8877

'.5126

1.9909

2.0971

2.1171
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Examining first the estimates in Table 6 for the cases of theoreticilly

correct distributions we can see several tendenCies. For these cases the dis-

tributions are positively skewed and leptokurtic. As is to'be expected the

means and variances for the same number of groups decrease as the degrees

of freedom (v) increase, and increase ag k'increases When v remains constant.

There is a definite tendency for the degrees of skewness and kurtosis to

decrease as v increases for the same k and also a tendency for these indices

to decrease as'k increasesJOith v held constant.

Next we examine those cases'in which one Type I error has been committed`

previous to the test of a mean difference, and ,for which we were able to

compute estimates of the parameters of the distribution that Would be used in

actually applying the Newman-Keuls technique, For example, we compare the

estimates of parameters of 3Q(2).41) and 3Q(3)..6) with those for 2Q(2).(1)

for the same number of degrees of freedom. On making these comparisons,we

see that, as we had originally hypothesized, the means'and variances are

smaller than tne values from the* distribution that would be used in applying

the Newman-Keuls procedure. There is also a'tendency for the actual dis-

tributions generated under the condition that one Type I error has been made

to be more skewed and more leptokurtic than the theoretical distributions.

In all cases the tendency is for all estimates.to decrease in value as v in-

creases for the same k, for the mean and variance of these diettributions to

decrease as k increases for the same v; and for the indices of skewness and
sy

kurtosis to decrease as k increases for the same v.

Further examination of the data reveals that, when more than one Type I

error has been committed the mean and variance decrease even further but the

indices of skewness and kurtosis appear not to be greatly affected.

25
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.11 8. Discussion
I

As had been expected by the authors prior to generating the data reported

in this paper, the distribution of,the Newman-Keuls test statistic changes

shape after a Type I error is committed. Also, ab expected this change

reaulta in an actual Wype I error rate that is smaller than the significance

level chosen by the researcher. This means, of course, that the'Newman-Keuls

procedure becomes rather conservative when one Type I error has been made,

and even more conservative fo4owins additional Type I errors. Thus the

.chance of making two or more Type I errors is lower than would be expected

if the disttibutions were not 'affected by the results of the previous

significance tests.

It is difficult to attempt to relate our findings to those of Petrinovlch

and Hardyck (1969) and'Carmer and Swanson (1971) because there as no reason

for them to estimate separately the error rates of second and third comparisons

after makitig errors on the initial comparison.. Our results do, of course,

relate to the fact that Petrinovich and Hardyck found the.experimentwise

0

Type I error rate for the case of all populations having identical means to

be better than that for mixtures of p9pulations.

Spj$tvoll (1974) in his.aection on the justification Of the Newman-Keuls

technique makes the statement, "At step 2 we assume (italics ours) that the

conclusion reached at step 1 is correct [p. ION." Our findings point out the

importance of this assumption.
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